
NASA-CR-203052
7/j ,_£:.,,'_,.... _......

SL ;i:i-:/)/

/_ / v.'('

ISI Reprint Series

ISI/RS-93-416

August 1993

Using Prospero to Support
Integrated Location-Independent

Computing

B. Clifford Neuman, Steven Seger Augart and

Shantaprasad Upasani

ISI/RS-93-416

August 1993

University of Southern California

Information Science Institute

4676Admiralty Way, Marina del Rey, CA 90292-6695

310-822-1511

This Research was supported in part by the National Science Foundation (Grant No. CCR-8619663), the Washington

Technology Centers, Digital Equipment Corporation, and the Advanced Research Projects Agency under NASA

Cooperative Agreement NCC-2-539. The views and conclusions contained in this paper are those of the authors, and

should not be interpreted as representing the official policies, either expressed or implied, of any of the funding

agencies.

© USENIX Association 1993. Proceedings of the Usenix symposium on Mobile and Location-Independent

Computing, Cambridge, MA, August 1993, 29-34.

Using Prospero to Support Integrated

Location-Independent Computing

B. Clifford Neuman Steven Seger Augart Shantaprasad Upasani

Information Sciences Institute

University of Southern California

Abstract

As computers become pervasive, users will access processing, storage, and communication re-
sources from locations that have not been practical in the past. Such users will demand support for
location-independent computing. While the basic system components used might change as the user
moves from place to place, the appearance of the system should remain constant.

In this paper we discuss the role of, and requirements for, directory services in support of in-
tegrated, location-independent computing. We focus on two specific problems: the server selection
problem and the user location problem. We present solutions to these problems based on the Pros-
pero Directory Service. The solutions demonstrate several unique features of Prospero that make it
particularly suited for support of location-independent computing.

1 Introduction

As the use of computers becomes pervasive the distinction between computer networks and com-
puter systems will blur. In the ideal world, users will think of a computer network and the systems

connected to it as a single system, rather than as a collection of systems connected by networks.
Users will not want to use a different system each time they change their location. Although users

will want to see a single system, they won't want to see the same system as every other user. Each
user will want a system that is tailored to his or her particular needs.

This paper begins with a discussion of the characteristics of and requirements for what we call
pervasive computing. We examine two problems that arise in such systems, the server selection
problem and the user location problem, discussing the role played by a distributed directory service

in their solution. In so doing, we describe the Prospero Directory Service, highlighting important
features, and describing how it can be used to solve these problems.

2 Pervasive Computing

Pervasive computing combines aspects of ubiquitous computing with the integration of informa-
tion and resources from many sources, within a single system tailored to the needs of a particular
user. Whereas the focus of ubiquitous computing has been on the devices and the communication

infrastructure, allowing the use 6f large and small computing devices from many locations, the focus
of pervasive computing is on mechanisms that allow the pieces to be tied together to form a coherent
whole. The two areas are not disjoint; each includes the other, only the perspective is different.

There are several characteristics to pervasive computing that place new demands on system
organization and structure. One of the primary characteristics is mobility. The term mobility
applies even to systems that don't support wireless communication; it is the mobility of users that

is critical to pervasive computing. Users interact with the system from more than one location. We
already see this on large university campuses where students log in from public terminal clusters.

29

Proceedings of the Symposium on Mobile and Location-lndependent Computing, Cambridge, MA, August 1993.

The use of portable computers while traveling provides another example. In the future, users will

be able to interact with the system through whatever I/O device is within reach as they travel from

location to location.

A second characteristic of pervasive computing is scale. The number of objects and services to

be managed can easily overwhelm the user, the geographic expanse of the system adds constraints

to be considered when selecting servers, and the lack of a single organization that controls the

system makes organization of these resources difficult. These characteristics can be addressed in

part through support for ¢tmtomization. Users should be able to choose the resources and objects

of interest, and treat the selected resources as a single system [5].

The directory service will play a critical role tying together the components of future systems.

The requirements for such a directory service are greatly affected by the scale of the system, and

the mobility of its users. One of the biggest problems to be addressed is support for transient

information. The transient information in such a system comes in two forms: first, the choice of

servers for certain operations may change as the user moves from location to location; and second,

information about users and other mobile objects needs to be maintained.

3 The Server Selection Problem

We begin our discussion by considering the server selection problem. Selecting resources for use
in a centralized system is straightforward: users choose from among the resources available and
select defaults which rarely change. In traditional distributed systems, the selected resources are

then located through remote name maps or directory services such as Sun's Network Information

Services (formerly known as Yellow Pages) [6] and Hesiod [3].

The mobility of users complicates server selection; the user's choice of resources will often vary

according to location. For example, while at home a user might want to use a printer at home and

while at work, one down the hall. While traveling the user might want output faxed to the hotel's
front desk, but only if there is no per-page charge for incoming faxes. Alternatively, a user might

want output sent to the printer at home so that it is waiting upon return.
It should be possible for users to specify defaults in such a way that the binding is cietermined

dynamically, when the service is needed, and based on a combination of user specified factors (e.g.,

cost and reliability), application requirements (e.g., support for PostScript), and transient factors

(e.g., load and proximity).

3.1 Using Prospero to Solve the Server Selection Problem

With Prospero, users define a virtual system which, among other things, specifies the mapping

of names to servers. This mapping is used to select the servers used by applications. Figure 1

shows how a virtual system is represented using Prospero. In the figure, the link labeled ROOT is a
reference to the root of the user's file system through which the user sees the same files regardless

of the location from which logged in. The Prospero File System is described elsewhere [4]. The

directory referenced by the SESS1ONS link identifies the locations from which the user is logged in
and is described in Section 4.

In this virtual system, the server selection criteria are encoded in the CONFIG/SERVERS directory.

In a traditional directory service, such a mapping would not provide the flexibility that is needed for

pervasive computing. However, several features of the Prospero Directory Service allow the mapping
to be determined dynamically. These features include virtual system aliases, union links, and filters.

3.1.1 Virtual system aliases

Prospero maintains several virtual system aliases that provide well defined starting points from
which names may be resolved. These aliases end with the string #: and identify the virtual systems

associated with the user, the home processor for the current login session 1 (the session), the processor

on which an application is running (the platform), and open file descriptors.

1 The virtual system for the se_ion is almoclated with the workstation or I/O device through which the user is

interacting with the system.

3O

Proceedings of the Symposium on Mobile and Location-Independent Computing, Cambridge, MA, August 1993.

HOOT SESSIONS

ATIRIBLrI'ES

NAME

PRJNCIPAL

TYPE

Neuman B. Clifford

KERBEROS bcn@isLMu

VIRTUAL-SYSTEM

SAL-234.USC.EDU

SERVERS

I

LINK-ATrRIBU'W_

DISPLAY :0

EXPIRES 9307261517Z

LOCATION Salvatori 234 (x0-4518)

NOTES SENDS-ACCEPTED

VIRTUAL SYSTEMS ,_ S,_,,_.,_'_,_._.'_"

Figure 1: Structure of a Virtual System

In the figure, the directory CONFIG/SERVERS/PRINTERS defines the printers available to the user.
If the user wanted to use the same printers always, the link would refer to a directory that explicitly

named the printers to be used. Here, the user chose to define the available printers as a symbolic
link to the directory of printers for the session. Because the target of the symbolic link begins with

the string SESSION#: the rest of the name is resolved in the virtual system for the session, which is

reachable through the node for the login platform and is part of the cloud labeled Platform-lnfo in
the figure.

IATrRIBUTE(COST<=.05,POSTSCRIPT)

PROXIMITY(SESS ION#:,NEAREST)

3.1.2 Union links

A user who wanted to choose from among the printer at home, the one at work, and those nearby,

could use a union link to create a dynamic view of available printers. The CONFIG/SERVERS/PRINTERS

link would refer to a directory with references to the printers at the user's home and office. That di-

rectory would include a symbolic union link to the directory of printers for the session. The resulting

directory would appear to contain the union of the two directories.

3.1.3 Filters

Users should be cautious when allowing the system to select servers for use in unfamiliar locations.

Business travelers have been taught this lesson by unscrupulous alternative telephone operator ser-

vices that charge exorbitant fees for long distance phone calls. Using Prospero, users are able to

constrain the selection of servers by applying a filter to a directory. A filter is a function attached to

a link that modifies the result of a directory query. In figure 1 the user applied the attribute() filter

to restrict the selection of printers to those charging no more than 5 cents per page, and supporting

31

Proceedings of the Symposium on Mobile and La)cation-lndcpcndcnt Computing, Cambridge, MA, August 1993.

PostScript.Of theprintersselectedby theattribute() filter, theproximity() filter selects the

closest, provided that the implementer of the proximity() filter devised an appropriate heuristic.

A filter can also change the order in which servers are presented to the user setting the COLLATION-
ORDER attribute of the links it returns. This allows filters to sort servers according to user specified

criteria.

Prospero supports two kinds of filters: loadable and predefined. Loadable filters are dynam-

ically loaded and executed during name resolution (their present implementation is not portable
and presents security problems). Predefined filters are compiled into the name resolution library.

Predefined filters have registered names and must be present in the name resolver (or on the server

for some filters). Predefined filters must be widely supported to be useful; therefore they usually

provide general operations such as selection based on the values of attributes.

3.1.4 Supporting mobile platforms

Our discussion so far has assumed that a stable platform exists for each session, and that a server

directory has been defined for each platform. The discussion has ignored problems related to mobile

platforms. The mobile platform problem can be addressed by another layer of indirection: the

platform might itself use a filter in the definition of its server directory. Such a filter might locally

broadcast a query in search of nearby platforms willing to provide such a directory. The resulting

directory would include links for each server that responds.

3.1.5 Presenting selections to the user

When selecting a server, an application can indicate additional constraints to be applied by specifying
additional filters. Once all filters have been applied, if the result is a single link, the referenced server

can be used. For example, the NEAREST argument to the proximity() filter in the figure might
result in the automatic selection of the nearest printer.

If the directory contains multiple links after the application of all filters, then the user could be

prompted through a dialog box to select one. This might occur if the argument to the proximity()

filter were specified as NEAREST 5, resulting in the return of the 5 nearest printers. Once selected by
the user, the choice should remain in effect until some event specified by the user, such as a change

in location, or a change in the list of available servers.

4 The User Location Problem

The user location problem is a second problem that illustrates the requirements imposed on a

directory service by user mobility. In centralized systems, locating an active user is easy; users are

either logged in, or they aren't. If logged in, the system records the the terminal in use and makes

this information available to applications such as finger, write, and send. In a distributed system,

the problem is considerably more complex.

A common approach to the user location problem is to replicate the data on all hosts. This is the

approach taken by rwho. Systems broadcast the names of the users that are logged in, and others
store this data locally where it can be searched by the user or application. The primary drawback

of this approach is that it doesn't scale very well. A second concern is privacy; users might not want

others to know where they are logged in, or that they are logged in at all.

A different approach is taken by the Zephyr [2] system at MIT's Project Athena [1]. Zephyr

provides a single database that may be consulted when a user's location is needed. This database

is replicated for reliability (technically, Zephyr provides a notification service that relies on this
database, but it is the database that is of interest here). Zephyr addresses privacy because each

user decides whether to register a session with Zephyr, and to what classes of other users the login
location is to be visible. Zephyr does not provide fine-grained control over access to user location

data. Though suitable for a large campus, the use of Zephyr as a user location database does not
scale across administrative domains.

32

Proceedings of the Symposium on Mobile and Location-lndependent Computing, Cambridge, MA, August 1993.

4.1 Using Prospero to Solve the User Location Problem

A third approach is to use a directory server to store user location information. Such a directory
server would have to tolerate frequent updates. If a user is to be able to specify the principals who
can obtain his or her location, then support for fine-grained access control is also necessary. Finally,

it must be possible to authenticate both updates and queries.
The Prospero Directory Service already maintains information about a user's virtual system. This

information has been extended to include information about Iogin sessions. At login, an entry is
added to a list of sessions, and at Iogout the entry is removed. By associating an expiration time
with the entry, it is possible to detect sessions that are not properly terminated. By placing an
access control list onthe list of sessions, a user can specify on a per-principal basis the individuals
to which the session is visible. The SESSIONSlink in figure 1 points to the directory that maintains
a list of sessions.

Prospero is a distributed directory service, and it is likely that user information will be distributed
across a large number of systems, maintained by multiple organizations. Each directory server
enforces its own access control. As such, if a user's directory information is stored on a trusted

server for the user's organization, the user's privacy depends only upon the security of that server.
Through its support for customization, Prospero allows a user to define a set of colleagues, and

the name used to refer to each. This set initially contains the names of other users in the local

organization, with users beyond the organization named hierarchically based on the name of the
organization to which they belong. Users can define their own short names for remote colleagues,
after which they are referred to no differently than if they were local. This is represented in figure 1
by the CONFIG/USERS directory. In fact, this customization mechanism allows a user to define the
set of colleagues considered local for use by finger; when run with no arguments it displays the
locations of users currently active and identified as colleagues by the user.

When using modified versions of commands such as send, _alk, or finger, the name of the

target (another user) is specified relative to the CONFIG/USERS directory. The command consults
the directory server to determine the location of the target user, and if found, performs the requested
operation.

5 Establishing a Session

The solutions to both the server selection and the user location problems depend on several

operations being performed when a new login session is established. This section describes what
happens when a user logs into a system supporting the Prospero login program. In this discussion,
the platform is the processor on which the application (in this case the login program) runs.

When a user attempts to log in to a system running the Prospero login, the system uses the
name of the user to find the user's virtual system. For local users the virtual system is found in the

directory of virtual systems for the local site. For remote users the virtual system is found starting
from a directory that identifies other sites. The PRINCIPALattribute associated with the user's
virtual system is examined and used to select an appropriate authentication method. The .user is
authenticated and the login program determines whether the user is authorized to use the resources
of the platform.

Once logged in, the namespace is defined by the user's virtual system and the virtual system alias
SESSION#: is defined as the virtual system of the platform on which the user logged in. Next, if
the user was suitably authenticated, an entry is made in the SESSIONSdirectory of the user's virtual
system recording the platform, the login time, an expiration time, and other information associated
with the session. During a session, name resolution occurs in the name space defined by the user's
virtual system. When the session is terminated, the entry in the SESSIONSdirectory is removed.

33

Proceedings of the Symposium on Mobile and Location-Independent Computing, Cambridge, MA, August 1993.

6 Status

The Prospero Directory Service has been available since December 1990 and has been used to

support the integration of information services on the Internet. The recent release of Version 5

of Prospero allows it to be more easily integrated with other applications. This paper described
some of the ways that Prospero can be used to support integrated location-independent computing.

Prospero presently provides the basic mechanism needed to address the problems discussed in this

paper. We have started work on the user location problem as part of the implementation of a

Prospero-based login program. We have not yet started work on the server selection problem, but

plan to do so in the near future. To find out more about Prospero, or for directions on retrieving

the latest distribution, send a message to info-prospero@isi.edu.

7 Summary

Pervasive computing places new demands on directory services. Among the demands is a need

to support transient data, fine-grained authorization for queries and updates, and the ability to

support dynamic (functional) bindings from names to servers and objects. These requirements
are met by the Prospero Directory Service, which can play a role in support for truly integrated,

location-independent computing.

Acknowledgments

Many individuals contributed to the design and implementation of Prospero. Ed Lazowska, John

Zahorjan, David Notkin, Hank Levy, and Alfred Spector helped refine the ideas that ultimately led

to the development of Prospero. Kwynn Buess, Steve Cliffe, Alan Erntage, George Ferguson, Bill
Griswold, Sanjay Joshi, Brendan Kehoe, and Dan King helped with the implementation of Prospero

and Prospero-based applications. Celeste Anderson, Sio-Man Cheang, Gennady Medvinsky, Santosh

Rao, Eve Schoo]er, and Stuart Stubb]ebine commented on drafts of this paper.

References

[1]

[3]

[4]

[5]

George A. Champine, Daniel E. Geer Jr., and William N. Ruh. Project Athena as a distributed

computer system. IEEE Computer, 23(9):40-51, September 1990.

C. Anthony DellaFera, Mark W. Eichin, Robert S. French, David C Jedlinsky, John T. Kohl,

and William E. Sommerfeld. The Zephyr notification service. In Proceedings of the Winter I988
Useniz Conference, pages 213-219, February 1988.

Stephen P. Dyer. The Hesiod name server. In Proceedings of the Winter 1988 Useniz Conference,
pages 183-189, February 1988.

B. CliffordNeuman. The Prospero FileSystem: A globalfilesystem based on the VirtualSystem

Model. Computing Systems, 5(4):407-432,Fall 1992.

B. Clifford Neuman. The Virtual System Model: A Scalable Approach to Organizing Large

Systems. PhD thesis, University of Washington, June 1992. Department of Computer Science
and Engineering Technical Report 92-06-04.

[6] Sun Microsystems. Yellow Pages Protocol Specification, February 1986. In Networking on the
Sun Workstation.

_USENIX Association 1993. This paper was published in the Proceedings of the Usenix Symposium on Mobile and Location-

Independent Computing, August 1993. Permission to copy without fee all or part of this material is granted, provided that

the copies are not made or distributed for commercial advantage, the USENIX Association copyright notice and the title
and date of publication appear, and that notice is given that copying is by permission of the USENIX Association. To

copy or republish otherwise requi_ specific permission from the USENIX Association. This research was supported in part

by the National Science Foundation (Grant No. CCR-8619663), the Washington Technology Centers, Digital Equipment
Corporation, and the Advanced Research Projects Agency under NASA Cooperative Agreement NCC-2-539. The views and

conclusions contained in this paper sure those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of any of the funding agencies. Figures and descriptions in this paper were provided by the

authors and are used with permission. The authors may be reached at USC/ISI, 4676 Admiralty Way, Marina del Rey, CA

90292-6695, USA. Telephone +1 (310) 822-1511, email bcnOisi.edu, swaQisi.edu, prua_lOisi.edu.

34

Proceedings of the Symposium on Mobile and Ltr..afion-lndependent Computing, Cambridge, MA, August 1993.

